partial weighting meaning in English
部分加权
Examples
- The paper consists of two chapters . in the first chapter , theory 1 [ 1 ] mainly by using the method of the law of the iterated logarithm with finite partial sum in wiener process proves hartman - wintner [ 1 ] law of the iterated logarithm for special finite partial weight sums
本文正文分两部分,定理1主要利用[ 1 ] wiener过程下的有限项部分和的重对数律,把hartman - wintner重对数律[ 1 ]推广到对特殊加权部分和也成立。 - The limit theory of law of the iterated logarithm have received more and more attentions , especially about identical independent random variables . but up to now , the studies are only for partial sums and , have n ' t shown any concern on the special finite partial weight suras . however , the partial sums and partial weight sums not only have the osculating aspects , but also have essential difference between them . so the studies for these play an important role in theoretical and applied setups
因此对重对数律的研究引起了国内外学者的兴趣,对独立同分布的随机变量,许多学者做了大量的研究工作,但迄今为止这方面的研究仍限于部分和数列的重对数律,很少涉及到特殊加权和的领域,而部分和与加权和之间既有密切联系,又有本质不同,因此,这一问题的研究具有一定理论意义和应用价值。 - Let { xn ; n > 1 } be mutually identically independent random variables distributed according to the normal distribution , { sn , n > 1 } be finite partial sum series , the purpose of this paper is to investigate law of the iterated logarithm type results for special finite partial weight sum series { sn , n > 1 } , we assume that sn = a1sn + a2 ( s2n - sn ) + a3 ( s3n - s2n ) + . . . + ad ( sdn - s ( d - 1 ) n ) in the second chapter , theory 2 by using the method of literature [ 8 ] , we extend hartman - wintner law of iterated logarithm on the gauss distribution . we substitute negative correspond for independent . it extends the corresponding results in gauss distribution
设{ x _ n ; n 1 }是独立同分布的且服从标准正态分布的随机变量序列, { s _ n , n 1 }是其部分和数列,讨论有限项特殊加权部分和{ s _ n , n 1 }的重对数律,其中定理2利用文献[ 8 ]提供的方法,在高斯分布上改进了hartman - wintner的重对数律,取消独立性用更弱的条件负相关代替,大大拓宽了重对数律在高斯分布中的使用范围。